Center-adjusted inference for a nonparametric Bayesian random effect distribution

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Center-adjusted Inference for a Nonparametric Bayesian Random Effect Distribution.

Dirichlet process (DP) priors are a popular choice for semiparametric Bayesian random effect models. The fact that the DP prior implies a non-zero mean for the random effect distribution creates an identifiability problem that complicates the interpretation of, and inference for, the fixed effects that are paired with the random effects. Similarly, the interpretation of, and inference for, the ...

متن کامل

Bayesian Nonparametric and Parametric Inference

This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.

متن کامل

On Nonparametric Bayesian Inference for the Distribution of a Random Sample

The nonparametric Bayesian approach for inference regarding the unknown distribution of a random sample customarily assumes that this distribution is random and arises through Dirichlet process mixing. Previous work within this setting has focused on the mean of the posterior distribution of this random distribution which is the predictive distribution of a future observation given the sample. ...

متن کامل

Bayesian nonparametric inference for random distributions and related functions

In recent years, Bayesian nonparametric inference, both theoretical and computational, has witnessed considerable advances. However, these advances have not received a full critical and comparative analysis of their scope, impact and limitations in statistical modelling; many aspects of the theory and methods remain a mystery to practitioners and many open questions remain. In this paper, we di...

متن کامل

Adjusted Bayesian inference for selected parameters

We address the problem of providing inference for parameters selected after viewing the data. A frequentist solution to this problem is False Discovery Rate adjusted inference. We explain the role of selection in controlling the occurrence of false discoveries in Bayesian analysis, and argue that Bayesian inference may also be affected by selection – in particular Bayesian inference based on su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistica Sinica

سال: 2011

ISSN: 1017-0405

DOI: 10.5705/ss.2009.180